翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Nucleus (algebra) : ウィキペディア英語版
Associator
In abstract algebra, the term associator is used in different ways as a measure of the nonassociativity of an algebraic structure.
==Ring theory==

For a nonassociative ring or algebra R, the associator is the multilinear map () : R \times R \times R \to R given by
:() = (xy)z - x(yz).\,
Just as the commutator measures the degree of noncommutativity, the associator measures the degree of nonassociativity of R.
It is identically zero for an associative ring or algebra.
The associator in any ring obeys the identity
:w() + ()z = () - () + ().\,
The associator is alternating precisely when R is an alternative ring.
The associator is symmetric in its two rightmost arguments when R is a pre-Lie algebra.
The nucleus is the set of elements that associate with all others: that is, the ''n'' in ''R'' such that
: () = () = () = \ \ .
It turns out that any two of ((),() , ()) being \ implies that the third is also the zero set.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Associator」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.